A key missing ability of current language models (LMs) is grounding to real-world environments. Most existing work for grounded language understanding uses LMs to directly generate plans that can be executed in the environment to achieve the desired effects. It casts the burden of ensuring grammaticality, faithfulness, and controllability all on the LMs. We propose Pangu, a generic framework for grounded language understanding that capitalizes on the discriminative ability of LMs instead of their generative ability. Pangu consists of a symbolic agent and a neural LM working in a concerted fashion: the agent explores the environment to incrementally construct valid candidate plans, and the LM evaluates the plausibility of the candidate plans to guide the search process. A case study on the challenging problem of knowledge base question answering (KBQA), which features a massive environment, demonstrates the remarkable effectiveness and flexibility of Pangu: A BERT-base LM is sufficient for achieving a new state of the art on standard KBQA datasets, and larger LMs further improve the performance by a large margin. Pangu also enables, for the first time, effective few-shot in-context learning for KBQA with large LMs such as Codex.
translated by 谷歌翻译
Recent studies have shown that CLIP has achieved remarkable success in performing zero-shot inference while its fine-tuning performance is not satisfactory. In this paper, we identify that fine-tuning performance is significantly impacted by hyper-parameter choices. We examine various key hyper-parameters and empirically evaluate their impact in fine-tuning CLIP for classification tasks through a comprehensive study. We find that the fine-tuning performance of CLIP is substantially underestimated. Equipped with hyper-parameter refinement, we demonstrate CLIP itself is better or at least competitive in fine-tuning compared with large-scale supervised pre-training approaches or latest works that use CLIP as prediction targets in Masked Image Modeling. Specifically, CLIP ViT-Base/16 and CLIP ViT-Large/14 can achieve 85.7%,88.0% finetuning Top-1 accuracy on the ImageNet-1K dataset . These observations challenge the conventional conclusion that CLIP is not suitable for fine-tuning, and motivate us to rethink recently proposed improvements based on CLIP. We will release our code publicly at \url{https://github.com/LightDXY/FT-CLIP}.
translated by 谷歌翻译
As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) are attracting considerable attention, and have tremendously helped Machine Learning (ML) engineers in understanding AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model's reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs' reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Secondly, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision (CV) and Natural Language Processing (NLP) domains.
translated by 谷歌翻译
High-quality traffic flow generation is the core module in building simulators for autonomous driving. However, the majority of available simulators are incapable of replicating traffic patterns that accurately reflect the various features of real-world data while also simulating human-like reactive responses to the tested autopilot driving strategies. Taking one step forward to addressing such a problem, we propose Realistic Interactive TrAffic flow (RITA) as an integrated component of existing driving simulators to provide high-quality traffic flow for the evaluation and optimization of the tested driving strategies. RITA is developed with fidelity, diversity, and controllability in consideration, and consists of two core modules called RITABackend and RITAKit. RITABackend is built to support vehicle-wise control and provide traffic generation models from real-world datasets, while RITAKit is developed with easy-to-use interfaces for controllable traffic generation via RITABackend. We demonstrate RITA's capacity to create diversified and high-fidelity traffic simulations in several highly interactive highway scenarios. The experimental findings demonstrate that our produced RITA traffic flows meet all three design goals, hence enhancing the completeness of driving strategy evaluation. Moreover, we showcase the possibility for further improvement of baseline strategies through online fine-tuning with RITA traffic flows.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
深度学习的最新进展极大地推动了语义解析的研究。此后,在许多下游任务中进行了改进,包括Web API的自然语言接口,文本到SQL的生成等。但是,尽管与这些任务有着密切的联系,但有关知识库的问题的研究(KBQA)的进展相对缓慢。我们将其确定并归因于KBQA的两个独特挑战,模式级的复杂性和事实级别的复杂性。在这项调查中,我们将KBQA放置在更广泛的语义解析文献中,并全面说明了现有的KBQA方法如何试图应对独特的挑战。无论面临什么独特的挑战,我们都认为我们仍然可以从语义解析的文献中汲取太大的灵感,这被现有的KBQA研究所忽略了。基于我们的讨论,我们可以更好地了解当前KBQA研究的瓶颈,并阐明KBQA的有希望的方向,以跟上语义解析的文献,尤其是在预训练的语言模型时代。
translated by 谷歌翻译
人类视频运动转移(HVMT)的目的是鉴于源头的形象,生成了模仿驾驶人员运动的视频。 HVMT的现有方法主要利用生成对抗网络(GAN),以根据根据源人员图像和每个驾驶视频框架估计的流量来执行翘曲操作。但是,由于源头,量表和驾驶人员之间的巨大差异,这些方法始终会产生明显的人工制品。为了克服这些挑战,本文提出了基于gan的新型人类运动转移(远程移动)框架。为了产生逼真的动作,远遥采用了渐进的一代范式:它首先在没有基于流动的翘曲的情况下生成每个身体的零件,然后将所有零件变成驾驶运动的完整人。此外,为了保留自然的全球外观,我们设计了一个全球对齐模块,以根据其布局与驾驶员的规模和位置保持一致。此外,我们提出了一个纹理对准模块,以使人的每个部分都根据纹理的相似性对齐。最后,通过广泛的定量和定性实验,我们的远及以两个公共基准取得了最先进的结果。
translated by 谷歌翻译
住房质量是区域财富,安全和健康的重要代理。了解住房质量的分布对于揭示农村发展状况并提供政治建议至关重要。但是,目前的农村房屋质量数据在很大程度上取决于在国家或省级的自上而下,耗时的调查,但未能在村庄一级解开住房质量。为了填补准确描述农村住房质量条件和数据不足之间的空白,我们收集大量的农村图像,并邀请用户按大规模评估其住房质量。此外,提出了一个深度学习框架,以根据众包农村图像自动有效地预测住房质量。
translated by 谷歌翻译
LIDC-IDRI数据库是肺癌预测的最流行的基准。但是,通过放射科医生的主观评估,LIDC中的结节可能与病理基础真理具有完全不同的恶性注释,从而引入了标签分配错误,并在培训期间引起了后续的监督偏见。因此,LIDC数据库需要更多的客观标签来基于学习的癌症预测。基于一个额外的小数据集,该数据集包含通过病理检查诊断的180个结节,我们建议重新标记LIDC数据,以减轻对此强大基准测试的原始注释偏差的影响。我们在本文中证明,基于度量学习的类似结节检索提供新标签将是一种有效的重新标记策略。对这些重新标记的LIDC结节进行的培训可改善模型性能,当添加不确定的结节的新标签时,这将增强。我们进一步推断出,重新标记的LIDC是最终的良好肺癌预测的方便方法,同时构建大型病理预处理的结节数据库提供了长期解决方案。
translated by 谷歌翻译
滑动检测对于在外星人表面驾驶的流浪者的安全性和效率至关重要。当前的行星流动站滑移检测系统依赖于视觉感知,假设可以在环境中获得足够的视觉特征。然而,基于视觉的方法容易受到感知降解的行星环境,具有主要低地形特征,例如岩石岩,冰川地形,盐散发物以及较差的照明条件,例如黑暗的洞穴和永久阴影区域。仅依靠视觉传感器进行滑动检测也需要额外的计算功率,并降低了流动站的遍历速率。本文回答了如何检测行星漫游者的车轮滑移而不取决于视觉感知的问题。在这方面,我们提出了一个滑动检测系统,该系统从本体感受的本地化框架中获取信息,该框架能够提供数百米的可靠,连续和计算有效的状态估计。这是通过使用零速度更新,零角度更新和非独立限制作为惯性导航系统框架的伪测量更新来完成的。对所提出的方法进行了对实际硬件的评估,并在行星 - 分析环境中进行了现场测试。该方法仅使用IMU和车轮编码器就可以达到150 m左右的92%滑动检测精度。
translated by 谷歌翻译